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We obtain simple analytic formulas to express the amplitudes for stripping a particle into an orbit of 
arbitrary L value, using a Coulomb wave to describe the relative motion of the incident particles and a plane 
wave to describe the relative motion of the products. This approximation may be appropriate for the descrip­
tion of (X,n) reactions, where X is any charged projectile, and n is a neutron, particularly when the incident 
energy is well below the Coulomb barrier. Initially, the neutron is assumed to be bound to a particle which 
is later captured by the target; the wave function of this initial bound state is taken to be asymptotic and of 
zero orbital angular momentum, of the form e~ar/r. The resulting nucleus is described as a bound state of two 
particles moving with arbitrary relative orbital angular momentum L; the radial wave function of this 
bound state may be taken to be of the form rL~1(e~^r--e~^r). The cross sections predicted by these ampli­
tudes are compared to the cross sections predicted by the analogous plane-wave Born approximation, and 
graphs are shown for a representative case. The qualitative appearance of the angular distribution is found 
to be much the same in both cases; however, the Coulomb-wave calculation predicts cross sections of smaller 
magnitude with previously assigned values of the reduced widths. 

no free parameters. I t is a first-order Born approxima­
tion; it does not differ from the simplest plane-wave 
treatments except in the use of a Coulomb wave instead 
of a plane wave. Because the analytic expressions ob­
tained involve only elementary functions and have a 
manageable simplicity, the comparison between the 
theoretical predictions and experimental results can be 
made very straightforwardly. 

Our analytic expressions for the amplitudes result 
from making the following approximations: 

(1) Initially the neutron to be emitted is in a bound 
state of L=0, whose radial wave function is described 
by an asymptotic form e~ar/r, where a is the wave 
number related to the separation energy of the neutron. 

(2) The interaction of the emitted neutron with the 
target is neglected. 

(3) In the initial state, we neglect all reaction waves; 
we describe it as a pure Coulomb scattering of target 
and projectile. 

(4) The resultant nuclear state is described by a 
two-body wave function having a unique value of the 
orbital angular momentum, that is, it has an angular 
wave function YLM(P) ', its radial dependence is taken 
to be rL~1erfir. 

These approximations lead to our particular form for 
the transition amplitude. Its main features are con­
veniently summarized in a diagram such as that of 
Fig. 1, where particle A represents the neutron. The 
description of the process is made in terms of three 
particles, A, B, and C. The reaction proceeds through 
the exchange of the particle B. The interactions of A 
with B, and of B with C, are treated exactly in terms of 
the postulated normalized wave functions and of 
reduced widths GAB0 and GBC* which appear as coeffi­
cients in the amplitude. In our treatment, we assume 
that the relative motion in the incident channel is a 
pure Coulomb wave, which is something like including 
all possible exchanges of photons between the incident 
particles. 
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I. INTRODUCTION 

IN a previous paper1 we have obtained convenient 
analytic expressions to represent the amplitudes of 

stripping reactions which occur by capture of a particle 
into an orbit of angular momentum L = 0 , using a 
Coulomb wave for the description of the relative motion 
of the incident particles, and a plane wave for the 
relative motion of the products. In this paper, we 
present an analogous treatment appropriate when the 
particle is captured into an orbit of arbitrary angular 
momentum L, and we include specifically the possibility 
that the particles involved have spins. The calculation 
of analytic expressions including the Coulomb distor­
tions in both entrance and exit channels may be carried 
out with analogous methods2 but the mathematical 
handling is considerably more involved, and the 
amplitudes cannot be expressed in terms of elementary 
functions; such calculations are the subject of a paper 
now in preparation. 

The aim has been to develop expressions for stripping 
amplitudes which should be nearly as easy to under­
stand and use as plane-wave expressions, yet have the 
enormous advantage of not ignoring the Coulomb 
distortions. Heretofore it has not been possible to take 
into account Coulomb distortions without going into a 
full optical-model treatment.3 Our theory includes that 
distortion which undoubtedly dominates the behavior 
of cross sections at bombarding energies below the 
Coulomb barrier not near a resonance, and introduces 

* Supported by the U. S. Office of Naval Research. 
1 F. B. Morinigo, Phys. Rev. 133, B65 (1964). 
2 The special case of L = 0 has been treated in different ways by 

K. A. Ter-Martirosian, Zh. Eksperim. i Teor. Fiz. 29, 713 (1955) 
[English transl.: Soviet Phys.—JETP 2, 620 (1956)] and F. B. 
Morinigo, Nucl. Phys. 50, 136 (1963). 

3 A good account of the status of direct interactions in 1961 and 
1962 is available in the papers presented at the Manchester 
Conference, Proceedings of the Rutherford Jubilee International 
Conference, edited by J. B. Birks (Heywood & Co. Ltd., London, 
1961) and at the Padua Conference, E. Clement el and C. Villi, 
Direct Reactions and Nuclear Reaction Mechanisms (Gordon and 
Breach, Inc., New York, 1963). 
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I t has been possible to arrive at analytic expressions 
of manageable complexity because of two reasons. 
Firstly, in the computations of the amplitudes we 
extend the radial integrations all the way to the origin 
instead of having a cutoff at the nuclear surface. This 
makes it feasible to use the parabolic type expressions 
for the Coulomb wave; we eventually arrive at expres­
sions which contain all the partial waves together, and 
thus we eliminate the summations over an infinite 
number of partial waves which would be required if we 
used spherical Coulomb waves. Secondly, we have 
chosen the particular form rL~le~^r to represent the 
radial wave function of the final bound state. This 
permits a key intermediate simplification in the course 
of the computation. This form is in itself suitable for 
representing bound states among the light nuclei. In 
any case, since the answers obtained are analytic, the 
amplitudes corresponding to wave function forms con­
taining the higher powers of r may be generated by 
taking derivatives of our answer with respect to the 
parameter p. 

II. DESCRIPTION OF THE FINAL BOUND STATE 

Within the framework of a nonrelativistic treatment, 
the final bound state should presumably be described 
by a function which is the solution of a Schrodinger 
equation. Our form FLMr (p)rL~1e~^r corresponds to a 
potential which bears no particular resemblance to those 
used in nuclear theory. Thus, it might perhaps be best 
to look upon P as a variational parameter which is to be 
adjusted so as to make YLM(Q)rL~le~^r correspond as 
closely as possible to the wave function itself. Since 1//3 
is the characteristic dimension of the nucleus repre­
sented, it is very unlikely that the best value of P will 
be greatly different from the bound-state wave number, 
that is, h2P2^2mEy where m is the reduced mass and E 
is the separation energy. 

As an estimate of how well the trial functions can 
represent other wave functions, we may present the 
result corresponding to assumed " t rue" wave functions 
of the same form as the hydrogen wave functions of 
lowest radial quantum number. These functions are the 
following: 

X(L,M,r,d,<p) = YL
M(9,<p)rLe-e°r 

X[(2£o)2 L + 3 /(2L+2)!]1 /2 . (2.1) 

For applications among light nuclei, states having 
radial nodes would ordinarily be so high in excitation 
that stripping theory need not consider them. The 
normalized trial functions corresponding to a parameter 
P are 

x J ( i , t f M ^ ) ' = F L
l f ( M ) * ^ 1 ^ 

'X[(2/3)2£+V(2I')I]1/2. (2.2) 

The overlap of this trial function with the hydrogen-
type wave function is easily computed. If we choose to 

express its value in terms of the ratio X=P/PQ, where 
fo2Po2=2niE exactly, we findjthat the maximum overlap 
occurs when 

W = ( 2 L + l ) / ( 2 Z + 3 ) , (2.3a) 

(Xt\x)m&x= (2L+l)^(2L+3)W2/(2L+2)2L+w. 

(2.3b) 

The maximum overlap is worst for Z = 0; the numerical 
values for Z,=0, 1, 2 are 0.92, 0.98, 0.99. Analogous 
estimates for the overlap of our trial functions with 
wave functions corresponding to potentials of the 
square well or harmonic oscillator or Hulthen shapes 
yield maximum values of the overlap all in the same 
range. Thus, we may conclude that the single-parameter 
description of the final bound state may be very suit­
able, especially for the values of L greater than zero. 

FIG. 1. Diagram illustrating the 
interactions which are included in 
our calculation. The relative mo­
tion in the incident channel is 
described by a Coulomb wave, 
which is symbolized by exchanges 
of photons. The small circles repre­
sent interactions which are treated 
exactly, in terms of a normalized 
wave function and a reduced 
width. 

(AB) 

We may note that a radial dependence such as 
rL~1(e~Pr—e~P'r) may be considered by simply taking 
differences of amplitudes corresponding to two decay 
parameters, P and p', and making a suitable change in 
the normalization constant. I t is clear that by using 
these two variational parameters P and /3', any reason­
ably smooth radial function having no nodes might be 
represented with excellent accuracy. For applications 
among heavier nuclei, wave functions with radial nodes 
may be constructed by taking suitable linear combina­
tions of terms of the same form. 

III. EVALUATION OF THE TRANSITION AMPLITUDES 
FOR SPINLESS PARTICLES 

If the incident and final relative motions asymp­
totically tend to plane waves eik'r and eikf'T, the cross 
section for a reaction is given by 

(da/dti) = (moMf/^W) (kf/k) \Tf0\
2, (3.1) 

where m^wif are the reduced masses of the relative 
motions, k and k/ are the initial and final wave vectors, 
and T/o is the transition amplitude. In our treatment, 
the following formal expression is the result of the 
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assumptions 1, 2, and 3 of Sec. I : 

Tfo=(-2T¥N0/mAB) 

X [e-iK'-*Xf(-r)*<pk+(rydrdtt, (3.2) 

which is deduced as Eq. (2.8) of Ref. 1; No is the con­
stant which normalizes the initial bound state, MAB is 
the reduced mass of the initial bound system (AB), 
X/(r) is the wave function of the final bound state, 
K' = k/mc/(wc+W£), and <£>k+0O is the initial scattering 
state. We shall use for <pk+ a Coulomb wave which 
asymptotically tends to the incident plane wave, plus 
outgoing scattered waves. We first do the calculation 
as though all particles were spinless, and later quote 
results in the general case of arbitrary spins. To repre­
sent the initial and final bound states, we use the 
following: 

Xf(T) = NfrL-le-^YL
M(ti), 

Xo(r)=Noe~«r/r, (3.3a) 

Nf
2=(GBC

f)2m2L+1/(2L)\, 

No2=(GAB°)2(2od/4T. (3.3b) 

The parameter a is given by a2= 2niABEAB/h2, where 
EAB is the separation energy, the energy required to 
separate the initial state into particles A and B. We 
note that X/(—r)= (—)LX/(r). The amplitude for a 
transition to a particular magnetic substate (L,M | con­
sists of an energy-dependent factor D, which contains 
kinematic dependences and the Coulomb parameter n> 
and a space integral which contains all the angular 
dependences 

of the confluent hypergeometric function1,4 

F(bAz) = lT(c)/T(b)T(c-b)2 

Tfo(L,M,P) = Dxmk,K',Q,n,L,M), (3.4a) 

D=(-)L+1(2TN0Nffi
2/<mAB) 

Xr(l+m)rBff /2, (3.4b) 

n = ZcZABe2mo/fi2ky (3.4c) 

I(0,k,K',Q,n9L,l£)= f expiiQ-^Y^irTr^e-^ 

XF(-in,l,ikr-ik>r)drdtt, (3.4d) 

Q = - K + k , (3.4e) 

where eZAB, eZc are the charges of target and projectile, 
and Q is the vector representing the change in linear 
momentum of the particle C; it plays the role of the 
"momentum transfer" in the plane-wave theory. We 
may carry out the space integrations indicated in 
Eq. (3.4d) after introducing an integral representation 

J o 

X e*Hh-l(\-ty-h-ldt, (3.5) 
'o 

with c= 1, b = —in, z=ikr—ik-r. The space integrations 
are easily carried out after expanding in spherical 
harmonics and spherical Bessel functions the factor 
e i q r , where q=Q—k/. To do the angular integration 
we use the orthogonality of the spherical harmonics; 
the remaining radial integral is expressible4 in terms of 
a hypergeometric function times other factors. Our 
choice of the form for the bound-state function makes 
one index of the hypergeometric function identically 
zero, hence the result is particularly simple. The 
expression which remains to be integrated over the 
parameter t is 

I{fi,k,K',Q,n,L,M) = £>0[r (c)/T (b)V (c- J)] 

Jo 
X F L ^ ( q ) ^ & - 1 ( l - / ) c - 6 - 1 ^ , (3.6a) 

where 

D 0 = ( 4 r ) i L r ( i ) r ( 2 L + 2 ) / [ 2 ^ r ( L + J ) ] . (3.6b) 

The argument of the spherical harmonic appearing in 
Eq. (3.6a) is understood to represent the direction of 
the vector q relative to an arbitrary reference axis, 
whose orientation we are still free to choose. The most 
explicit comparison with the plane-wave theory can be 
made if we choose our axis of reference to lie along the 
direction of the incident wave vector k. The spherical 
harmonics referred to this axis [which we denote by 
Fi,M(q; k ) ] may be expressed in terms of an azimuthal 
angle and a homogeneous polynomial of order L in 
products of sinY and cosy, where 7 is the angle between 
the vectors; the sine and cosine may be calculated from 
the definitions of the vectors as follows: 

COST = (k• q/kq) = (Q/q) cos0[l - (k2/k • Q)Q, (3.7a) 

s inY=[l -cos 2 Y] 1 / 2 = (Q/q) sin0, (3.7b) 

where 6 is the angle between the vectors Q and k. When 
we insert the expressions (3.7a,b) into formulas for the 
spherical harmonics appearing in the integral (3.6a), 
the factor qL is canceled out, and effectively replaced 
by QL, which is independent of the parameter /. At the 
same time, siny is replaced by sin0, which is also 
independent of t. Since it is possible to express 
YLM{({; k) in such a way that at most L—\M\ powers 

4 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), p. 605, 
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of COSY are required,5 the dependence of the integrand 
of Eq. (3.6a) on the parameter / may be simplified con­
siderably. An expression valid for L=0, 1, 2 is 

I(P,k,K',Q,n,L,M) = Io(L)YL*(Q]k) 

x[r(c)/r(b)r(c-h)i f t^{i-ty-^ 
Jo 

Xil-Gofi-^l-Xt+fi^dt, (3.8a) 
where 

Io(L) = DoQL/(Q2+^)L+1, (3.8b) 

G0= (2^+2k-Q)/(e2+/32), (3.8c) 

/x=2e2 cos2<95(|M"|,2)/(3 c o s 2 0 - l ) , 

€ = £ 2 / k . Q , (3.8d) 

\=€8(\M\,l)+2vi/e. 

The remaining integrals over the parameter t may now 
be recognized as being representations of the hyper-
geometric function.4 The final result is 

mkJ?,Q,n,L,M) 
= Io(L)YLM(Q;k){F(L+l, -in, 1, Go) 

- (-in)\F(L+l, -in+1, 2, Go) 

+h(-inX-in+l)nF(L+l, - m + 2 , 3 , G 0 ) } . (3.9) 

For the cases of interest, L is a positive integer or zero. 
The factor involving the hypergeometric functions can 
in these cases be expressed entirely in terms of ele­
mentary functions, and it may be seen that it leads to 
a rather weak angular dependence. The quantity in 
braces in Eq. (3.9) may be rewritten as 

( 1 - G 0 ) - - # ( L , M ) , 

where 

R(L,M) = ZF(-L,-in,l,H0) 

+ (in)(l-Go)-1\F(-L+l, -in+1, 2, H0) 

+i(-in)(-in+l)(l-G0)-
2 

XixF(-L+2, -in+2, 3, # 0 ) ] 

and 
# o = G o / ( G 0 - l ) . (3.10) 

Since the first index of the hypergeometric functions is a 
negative integer, the expansion4 in powers of Ho con­
tains a finite number of terms, (L+l) from the first, 
or (L) from the second. Putting together Eqs. (3.4a,b), 
(3.9), (3.10), (3.8c), and (3.6b), we have our explicit 
expression for the transition amplitude Tfo. The plane-
wave theory is the special case obtained in the limit 

5 This is obvious by inspection of a list of the spherical har­
monics, as given by A. R. Edmonds, Angular Momentum in 
Quantum Mechanics (Princeton University Press, Princeton, 
New Jersey, 1957), or, for M>0 by successive application of the 
lowering operator L_ = e~i,f>\J)/dd-\-i coWd/d<p~] on the function 
YLL(0,<P), which is well known to be proportional to (&iaB)LeiL*. 
For M<0, we may use the symmetry rule YL~M= (—)MYL

M*. 

that n -> 0; the factors R(L,M), T(l+in) and e~nirl2 are 
replaced by unity in this limit. 

IV. DIFFERENTIAL CROSS SECTIONS IN COULOMB-
WAVE AND PLANE-WAVE THEORIES 

The usual experiment does not measure the spin 
polarization of the nuclei; in the plane-wave theory 
(PWBA) with spinless particles, a summation of the 
transition rates to all the final magnetic substates 
(L,M\ leads to the following expression for the cross 
section: 

(Ar/<«2)pwBA= WIQW(g2+/32)^]2(2L+ 1)/4TT , (4.1a) 

W= (tnonif/niAB2)(kf/k) 

X (GBcfGAB«)K2(}yw{2a) (4TT) 

x[r(§)r(2L+2)/2^r(L+i)]2. (4.ib) 
In the Coulomb-wave theory (CWBA), the summation 
over the final M values cannot be carried out by manipu­
lations; we must have a specific expression or an 
evaluation of the transition rates to each magnetic 
substate. The structure of the answer is the same as 
that of Eq. (4.1); the only change is that the Coulomb 
penetration factors appear, and the sum over M replaces 
the factor (2L+l)/47r. The cross section is 

(da/dtycwBA^ (AT/<K2)PWBA 

X [2TTV (e 2 ™-1)] [ V (2L+1) ] 

Xexp{2^ a r c t a n p j S * / ^ - * 2 ^ - / ? ) ] } ^ , (4.2a) 

where 
RO=XM\R(L,M)\2. (4.2b) 

The arctangent is to be chosen so as to lie between 0 and 
7r. The only new angular dependence comes from the 
factor Ro, which is the sum of absolute squares of 
polynomials having at most L powers of Ho. In terms 
of the wave numbers and the angle 6, the quantity Ho is 

H0-=2(k2-kK' cos0+i(3k)/(t32+K'-k2-2i/3k). (4.3) 

The dependence of this quantity on the angle 6 is not 
particularly strong; hence, we may conclude that it is 
unlikely that the Coulomb distortion will alter the 
appearance of the angular distributions to something 
radically different from the predictions of the plane-
wave theory. 

Now, since the only neutral particle in nuclear physics 
is the neutron, which has a spin, we must carry out a 
calculation for particles with spin before having a 
theory applicable to cases of interest. The particles A, 
B, and C are assumed to be endowed with spins J A-, JB, 
and Jc. The spins J A and JB are coupled (with Z, = 0) 
to form the initial state, of spin Jo. We let the spin of 
the final state be / / ; we assume it is formed from JB, 
Jc, and L by first coupling JB and L to form an inter­
mediate j , which then couples to Jc to give / / . The 
only change when we sum over final projections and 
average over initial projection occurs in Eq. (4.1), which 
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C14 (d,n)N15 

3.53 MeV 

.̂Plane Wave 
Calculation 

Coulomb Wave 
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FIG. 2. The differential cross sections predicted by the plane-
wave theory and the Coulomb-wave theory for the case of the 
reaction C14(^,w)N15 at 3.53-MeV bombarding energy, assuming 
L— 1, for the case that the reduced widths take on their maximum 
possible value of unity, as explained in Sec. IV. 

must be modified by multiplying it by a statistical 
factor 

[ ( 2 / 0 + 1 ) (2Jf+1)/ (2/2,+1) (2L+1)] 

X [ l / ( 2 / c + l ) ( 2 / o + l ) ] . (4.4) 

I t is possible to use the same mathematics to generate 
analytic expressions in the approximation that the final 
state is described by a two-parameter wave function, of 
radial dependence r^~l{e~^r—e~P'r); all that we need 
to do is to use a difference of terms of the form of 
Eq. (3.9) in the new formula for R(L,M). This proce­
dure will in most cases have a negligible effect on the 
predicted angular distributions, because the new term 
modifies only the contribution of the integral (3 Ad) in a 
region near the origin, which is suppressed both by the 
weighing factor rL+1, and by the Coulomb repulsion. 
The only significant change occurs in the normalization 
factor, so that a somewhat larger value of the reduced 
width corresponds to a cross section of the same 
magnitude. 

We have carried out a numerical evaluation of the 
cross sections predicted by Eqs. (4.1a) and (4.2a) for 
the case of the reaction Cu(d,n)W5 (ground state) at 
3.53-MeV bombarding energy, which is exothermic 
with an energy release of 7.987 MeV and appears to 
proceed by an L~\ capture.6 In Fig. 2 we show the 
theoretical curves predicted by the expressions (4.1a) 
and (4.2a) for the case that the reduced widths take 
their maximum value of unity, and with a decay 
parameter ($= *-u 

V. CONCLUSIONS 

The preceding discussion and example indicate that 
the Coulomb-wave expressions obtained in this paper 
predict the qualitative features of the angular distribu­
tions to be little different from those of the plane-wave 
theory; it may thus be expected that our formulas will 
prove satisfactory for the fitting of many angular 
distributions. Thus, it is shown that the recurrent puzzle 
of having obtained good fits with plane-wave expres­
sions is not a mystery, but to be expected to the extent 
that it is the Coulomb repulsion which dominates the 
distortions. This is the same conclusion obtained in our 
previous paper1 dealing with the L = 0 case only. The 
chief difference between plane-wave and Coulomb-wave 
theory lies in the magnitude predicted, if we assume a 
given value of the reduced widths. The Coulomb-wave 
theory predicts cross sections of smaller magnitude; 
conversely, if we obtain reduced widths by fitting the 
data, the Coulomb-wave theory will yield larger values 
for the reduced widths. This is in the direction of better 
agreement with shell-model theory and with other 
experimental evidence.6 I t will undoubtedly be of great 
interest to carry out a fit with these expressions to a 
large variety of experimental data, in order to test the 
general usefulness of the method. A future comparison 
with analogous DWBA calculations should also be of 
interest. 
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